Found in titles:
-
Wiki: DMelt:Numeric/1.Linear.Algebra
[100%] (in title)
-
Wiki: DMelt:Numeric/4.Linear.Equations
[100%] (in title)
-
DMelt: Catalano.Statistics.Kernels.Linear [100%] (Java API)
-
DMelt: joptima.functions.Linear [100%] (Java API)
-
DMelt: jsat.classifiers.linear.ALMA2 [100%] (Java API)
-
DMelt: jsat.classifiers.linear.AROW [100%] (Java API)
-
DMelt: jsat.classifiers.linear.BBR [100%] (Java API)
-
DMelt: jsat.classifiers.linear.LinearBatch [100%] (Java API)
-
DMelt: jsat.classifiers.linear.LinearL1SCD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.LinearSGD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.LinearTools [100%] (Java API)
-
DMelt: jsat.classifiers.linear.LogisticRegressionDCD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.NHERD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.NewGLMNET [100%] (Java API)
-
DMelt: jsat.classifiers.linear.PassiveAggressive [100%] (Java API)
-
DMelt: jsat.classifiers.linear.ROMMA [100%] (Java API)
-
DMelt: jsat.classifiers.linear.SCD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.SCW [100%] (Java API)
-
DMelt: jsat.classifiers.linear.SDCA [100%] (Java API)
-
DMelt: jsat.classifiers.linear.SMIDAS [100%] (Java API)
-
DMelt: jsat.classifiers.linear.SPA [100%] (Java API)
-
DMelt: jsat.classifiers.linear.STGD [100%] (Java API)
-
DMelt: jsat.classifiers.linear.StochasticMultinomialLogisticRegression [100%] (Java API)
-
DMelt: jsat.classifiers.linear.StochasticSTLinearL1 [100%] (Java API)
-
DMelt: jsat.classifiers.linear.package-frame [100%] (Java API)
-
DMelt: jsat.classifiers.linear.package-summary [100%] (Java API)
-
DMelt: jsat.linear.CholeskyDecomposition [100%] (Java API)
-
DMelt: jsat.linear.ConcatenatedVec [100%] (Java API)
-
DMelt: jsat.linear.ConstantVector [100%] (Java API)
-
DMelt: jsat.linear.DenseMatrix [100%] (Java API)
-
DMelt: jsat.linear.DenseVector [100%] (Java API)
-
DMelt: jsat.linear.EigenValueDecomposition [100%] (Java API)
-
DMelt: jsat.linear.GenericMatrix [100%] (Java API)
-
DMelt: jsat.linear.HessenbergForm [100%] (Java API)
-
DMelt: jsat.linear.IndexValue [100%] (Java API)
-
DMelt: jsat.linear.LUPDecomposition [100%] (Java API)
-
DMelt: jsat.linear.Matrix [100%] (Java API)
-
DMelt: jsat.linear.MatrixOfVecs [100%] (Java API)
-
DMelt: jsat.linear.MatrixStatistics [100%] (Java API)
-
DMelt: jsat.linear.Poly2Vec [100%] (Java API)
-
DMelt: jsat.linear.QRDecomposition [100%] (Java API)
-
DMelt: jsat.linear.RandomMatrix [100%] (Java API)
-
DMelt: jsat.linear.RandomVector [100%] (Java API)
-
DMelt: jsat.linear.RowColumnOps [100%] (Java API)
-
DMelt: jsat.linear.ScaledVector [100%] (Java API)
-
DMelt: jsat.linear.ShiftedVec [100%] (Java API)
-
DMelt: jsat.linear.SingularValueDecomposition [100%] (Java API)
-
DMelt: jsat.linear.SparseMatrix [100%] (Java API)
-
DMelt: jsat.linear.SparseVector [100%] (Java API)
-
DMelt: jsat.linear.SubMatrix [100%] (Java API)
-
DMelt: jsat.linear.SubVector [100%] (Java API)
-
DMelt: jsat.linear.TransposeView [100%] (Java API)
-
DMelt: jsat.linear.Vec [100%] (Java API)
-
DMelt: jsat.linear.VecOps [100%] (Java API)
-
DMelt: jsat.linear.VecPaired [100%] (Java API)
-
DMelt: jsat.linear.VecPairedComparable [100%] (Java API)
-
DMelt: jsat.linear.VecWithNorm [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.ChebyshevDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.CosineDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.CosineDistanceNormalized [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.DenseSparseMetric [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.DistanceCounter [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.DistanceMetric [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.EuclideanDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.JaccardDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.KernelDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.MahalanobisDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.ManhattanDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.MinkowskiDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.NormalizedEuclideanDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.PearsonDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.SquaredEuclideanDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.TrainableDistanceMetric [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.WeightedEuclideanDistance [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.package-frame [100%] (Java API)
-
DMelt: jsat.linear.distancemetrics.package-summary [100%] (Java API)
-
DMelt: jsat.linear.package-frame [100%] (Java API)
-
DMelt: jsat.linear.package-summary [100%] (Java API)
-
DMelt: jsat.linear.solvers.ConjugateGradient [100%] (Java API)
-
DMelt: jsat.linear.solvers.package-frame [100%] (Java API)
-
DMelt: jsat.linear.solvers.package-summary [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.BallTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.BaseCaseDT [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.CoverTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.DefaultVectorCollection [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.DualTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.IncrementalCollection [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.IndexDistPair [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.IndexNode [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.IndexTuple [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.KDTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.RTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.RandomBallCover [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.RandomBallCoverOneShot [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.SVPTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.ScoreDT [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.ScoreDTLazy [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.VPTree [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.VPTreeMV [100%] (Java API)
-
DMelt: jsat.linear.vectorcollection.VectorArray [100%] (Java API)
-
Wiki: Manual:Linear algebra [100%] (in title)
-
Wiki: Book:Linear algebra [100%] (in title)
-
DataMelt API: h.xdot_linear_grad [100%] (Java API)
-
Jython Example: jnumeric.py [88%] Linear algebra using JNumeric
-
Wiki: Tutorial:JMathLab/Equations (Linear Systems) [87%] (in title)
-
Jython Example: la4j_matrix_lin_eq.py [86%] Solving linear equitions and decomposition
-
Jython Example: stat_regression2.py [75%] Linear regression example II
-
Java Example: BasicMatrixUsage.java [75%] Matrix manipulation with VectorZ
-
Jython Example: fit_linear_leastsqured.py [70%] Fitting data using defined linear function
-
Jython Example: matrix_lin_eq.py [70%] Solving system of linear equations using Jama
-
Jython Example: weka_linear_regression.py [70%] Weka classification using linear regressions and graph
-
Jython Example: la4j_matrix.py [62%] Create new dense, sparse matrix
-
Jython Example: matrix0.py [62%] Matrix calculations and operations using Java
-
Jython Example: matrix_4D.py [62%] Multidimensional matrix 3x3x3x3 in 4D and its operations
-
Jython Example: la4j_matrix_transf1.py [62%] Transforms on matrix (inversion, multiplications, etc.)
-
Jython Example: jplasma_Cholesky.py [62%] System of linear equations Cholesky method
-
Jython Example: la4j_matrix_transf2.py [62%] Transform a matrix using used-defined functions
-
Jython Example: matrix_ejml_2.py [62%] Matrix (dense) calculations using ejml
-
Jython Example: symbolic5.py [62%] Analytic symplification and system of linear equations
-
Jython Example: fit_hfitter3.py [62%] Non-linear fit of H2D histogram with HFitter
-
Groovy Example: matrix_jscience.groovy [62%] Complex values and operations
-
Jython Example: matrix_ejml.py [62%] Create a simple matrix and then transpose and invert it
-
Java Example: EightPoints01.java [62%] Experiments with self-organizing vectors
-
Java Example: SparseMatrix.java [62%] Sparse matrix functionality in VectorZ
-
Java Example: BasicVectorUsage.java [62%] Vectors created using VectorZ
-
Jython Example: matrix_ejml_vis.py [62%] Visualize a (dense) matrix
-
Octave/Matlab Example: symb_eq2.m [62%] Solving linear equations using Jasymca
-
Jython Example: stat_regression1.py [62%] Linear regression example. Show predictions and confidence range
-
Jython Example: matrix_ejml_solve.py [61%] Linear solver for systems of the form A*x=b, where A and B are known and x is unknown
-
Jython Example: fit_temprature.py [50%] Fitting data using a complex function (non-linear regression)
-
Jython Example: mining_regression.py [50%] Data mining using a linear regression and predictions
-
Jython Example: matrix_ejml_io.py [50%] Matrix input/output using ejml
-
Jython Example: fit_interactive.py [50%] Interactive non-linear fit using HFit
-
Jython Example: jplasma_lu.py [50%] Solving a system of linear equations using LU fact
-
Jython Example: jnumeric_fft.py [50%] Fast Fourier Transform (FFT) using JNumeric
-
Jython Example: equa_apache.py [50%] Solving polynomial equations (quadratic, cubic etc.)
-
Jython Example: matrix1.py [50%] Dense matrix calculations using parallel cores (multithreaded)
-
Jython Example: fit_hfitter1.py [50%] Non-linear fits using he Chi2 method with HFitter
-
Jython Example: lalgebra_ujmp_random.py [50%] Making random matrix and viasualise it using UJMP package
-
Jython Example: lalgebra_ujmp.py [50%] Showing Mandelbrot matrix using UJMP package
-
Jython Example: lalgebra_sparse_show_jdml.py [50%] Creating ZERO sparce matrix, show and transpose with UJMP
-
Jython Example: lalgebra_ujmp_matrix.py [50%] Manipulations with sparse and dense matrix using UJMP
-
Jython Example: fit_hfitter2.py [50%] Non-linear fits with HFitter using signal+background assumption
-
Jython Example: regression_nonlinear.py [50%] Non-linear regression using fitter and visual representation
-
Jython Example: multi_dft.py [50%] Matrix operation using multiple cores with multithreading
-
Jython Example: classify_smv.py [50%] Support vector machine (SVM) binary linear classifier using Smile
-
Jython Example: classify_flq.py [50%] Classification using Fisher's Linear Discriminant (FLD)
-
Jython Example: classify_lda.py [50%] Classification using Linear discriminant analysis (LDA)
-
Jython Example: flanagan_fourier_transform.py [50%] Fourier transform to obtain a power spectrum using Flanagan
-
Jython Example: matrix_ejml_radom_vis.py [50%] Random matrix and its visualisation
-
Jython Example: javaview_vectors.py [50%] Add two vectors in 3D using JavaView library
-
Jython Example: javaview_roots_function.py [50%] Find roots of a function using JavaView
Searching 62601 articles took 27 ms