jhplot
Class HNeuralNet
- java.lang.Object
-
- jhplot.HNeuralNet
-
public class HNeuralNet extends java.lang.ObjectNeural Netwrork calculations. Based on Backpropagation.
-
-
Constructor Summary
Constructors Constructor and Description HNeuralNet()Create a network net and set name for the network
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method and Description voidaddFeedForwardLayer(int neuronCount)Construct this layer with a sigmoid threshold function.voidaddFeedForwardLayerWithBias(int neuronCount)Construct this layer with a sigmoid threshold function.AnalyzeNetworkanalyzeNetwork()Analyse the current neural network.voiddoc()Show online documentation.BasicNetworkeditNetwork()Edit a neural net in a frameBasicNeuralDataSetgetData()Get datajava.util.ArrayList<java.lang.Double>getEpochError()Returns errors for each epoch.BasicNetworkgetNetwork()Return neural net back.MLDatapredict(MLData input)Evaluate data using current NNP0Dpredict(P0D input)Generate prediction for input dataPNDpredict(PND input)Generate predictions for all input data.intread(java.lang.String file)Read a neural net from a file.voidreset()Reset the weight matrix and the thresholds.java.lang.Stringsave(java.lang.String file)Save current status of neural net.voidsetData(double[][] input)Construct a data set from an inputvoidsetData(double[][] input, double[][] ideal)Construct a data set from an input and idea array.voidsetData(PND input)Set datavoidsetData(PND input, PND ideal)Set data for training.voidshow()Show Net in EncodeDocument.voidshowNetwork()Show a neural net in a frame.voidshowWeights()Show a neural net weights in a separate frame.PNDstandardize(PND input)Standardize each column.inttrainBackpropagation(boolean isShow, int maxEpoch, double learnRate, double momentum, double errorMinEpoch)Training neural network.Construct a backpropagation trainer.
-
-
-
Constructor Detail
-
HNeuralNet
public HNeuralNet()
Create a network net and set name for the network- Parameters:
name- name for the network
-
-
Method Detail
-
reset
public void reset()
Reset the weight matrix and the thresholds.
-
addFeedForwardLayer
public void addFeedForwardLayer(int neuronCount)
Construct this layer with a sigmoid threshold function. Use sigmoid for activation.- Parameters:
neuronCount- How many neurons in this layer
-
addFeedForwardLayerWithBias
public void addFeedForwardLayerWithBias(int neuronCount)
Construct this layer with a sigmoid threshold function. Use sigmoid for activation.- Parameters:
neuronCount- How many neurons in this layer
-
setData
public void setData(double[][] input, double[][] ideal)Construct a data set from an input and idea array. Used for supervized training.- Parameters:
input- The input into the neural network for training.ideal- The ideal output for training.
-
setData
public void setData(double[][] input)
Construct a data set from an input- Parameters:
input- The input into the neural network for training.
-
setData
public void setData(PND input, PND ideal)
Set data for training.- Parameters:
input- input data setideal- expected resul.
-
setData
public void setData(PND input)
Set data- Parameters:
input- input data set
-
standardize
public PND standardize(PND input)
Standardize each column. This means S(i)= (X(i) - mean) / std fot each column in PND;- Parameters:
input- PND- Returns:
- new PND after standardize
-
getData
public BasicNeuralDataSet getData()
Get data- Returns:
- data
-
predict
public P0D predict(P0D input)
Generate prediction for input data- Parameters:
input- input data for predictions
-
predict
public PND predict(PND input)
Generate predictions for all input data. Assumes that the predicted array has less then 3 dimensions.- Parameters:
input- input data for prediction- Returns:
- data with predictions
-
trainBackpropagation
public int trainBackpropagation(boolean isShow, int maxEpoch, double learnRate, double momentum, double errorMinEpoch)Training neural network.Construct a backpropagation trainer. Typical example: train(5000, 0.1, 0.25, 0.001);- Parameters:
isShow- Show learning on a pop-up plotmaxEpoch- maximum number of epochslearnRate- The rate at which the weight matrix will be adjusted based on learning.momentum- The influence that previous iteration's training deltas will have on the current iteration.errorMinEpoch- min error for epoch.- Returns:
- returns the epoch at which training was stopped.
-
save
public java.lang.String save(java.lang.String file)
Save current status of neural net.- Parameters:
file- File name- Returns:
- what is done
-
read
public int read(java.lang.String file)
Read a neural net from a file.- Parameters:
file- File name- Returns:
- 0 if it is OK. -1 if file not found; -2: if NN not found.
-
getNetwork
public BasicNetwork getNetwork()
Return neural net back.- Returns:
- network
-
showNetwork
public void showNetwork()
Show a neural net in a frame.
-
showWeights
public void showWeights()
Show a neural net weights in a separate frame.
-
analyzeNetwork
public AnalyzeNetwork analyzeNetwork()
Analyse the current neural network.- Returns:
- analyzer
-
editNetwork
public BasicNetwork editNetwork()
Edit a neural net in a frame
-
show
public void show()
Show Net in EncodeDocument.
-
getEpochError
public java.util.ArrayList<java.lang.Double> getEpochError()
Returns errors for each epoch. If the max epoch number was set in the train() method. The array may have less entries if learning has reached the minimum error.- Returns:
- arrays of errors for each epoch
-
doc
public void doc()
Show online documentation.
-
-
DMelt 3.0 © DataMelt by jWork.ORG