Making ProMC single-particle gun for HEP
Code: "particle_gun.py". Programming language: Python
DMelt Version 1.4. Last modified: 02/17/1970. License: Free
https://datamelt.org/code/cache/particle_gun_890.py
To run this script using the DMelt IDE,
copy the above URL link to the menu [File]→[Read script from URL] of the DMelt IDE.
# Single particle gun implemented using Jython/Python and Java
# Run this script using DMelt Java program
# S.Chekanov (ANL)
from java.io import *
from java.util import *
from java.net import *
from java.util import *
from proto import *
from promc.io import *
from hepsim import *
from java.util import *
from hephysics.particle import *
from java.util.zip import *
from java.lang import *
import re
outFilename="outfile.promc"
momentum = 1 # 1 GeV
xPID = 211 # pions
Ntot=100 # number of events
print "output=",outFilename
# write a single entry
def writeInfo(key,data):
entry = ZipEntry(key)
zout.putNextEntry(entry)
entry.setSize(len(data))
zout.write(data)
zout.closeEntry()
# add one particle
def addParticle(b,unit,lunit,Id,M,M1,M2,PdgId,px,py,pz,e,status,weight,charge,barcode,x,y,z,t,D1,D2):
b.addId(Id)
b.addMass( (int)(M*unit) )
b.addMother1(M1)
b.addMother2(M2)
b.addPdgId(PdgId)
b.addPx( (int)(px*unit) )
b.addPy( (int)(py*unit) )
b.addPz( (int)(pz*unit) )
b.addEnergy( (int)(e*unit) )
b.addStatus(status)
b.addWeight(weight)
b.addCharge(charge)
b.addBarcode(barcode)
b.addX( (int)(x*lunit) )
b.addY( (int)(y*lunit) )
b.addZ( (int)(z*lunit) )
b.addT( (int)(t*lunit) )
b.addDaughter1(D1)
b.addDaughter2(D2)
fout = FileOutputStream(outFilename)
zout = ZipOutputStream(BufferedOutputStream(fout))
random=Random()
PI2=2*Math.PI
PI=Math.PI
deg= 180 / Math.PI
txtdescription="Single particles. PID="+str(xPID)+" max E(GeV)="+str(momentum)
print txtdescription
# create a header
b_desc= ProMCDescriptionFile.ProMCDescription.newBuilder()
b_desc.setVersion(4L)
b_desc.setEvents(Ntot)
b_desc.setTimestamp(1L)
b_desc.setDescription(txtdescription)
writeInfo("version",Long.toString(4).encode())
b_header = ProMCHeaderFile.ProMCHeader.newBuilder()
unit = 1000*100
lunit = 1000
b_header.setId1(xPID)
b_header.setId2(xPID)
b_header.setCrossSection(1)
b_header.setCrossSectionError(0)
b_header.setLengthUnit(lunit)
b_header.setMomentumUnit(unit)
b_header.setName("Single particles")
b_header.setNameLengthUnit("mm")
b_header.setNameMomentumUnit("GeV")
# get PDG table from the jar file (not external)
# Add PDG table to the output file
loader = ClassLoader.getSystemClassLoader()
stream = loader.getResourceAsStream("probrowser/resources/particle.tbl")
reader = BufferedReader(InputStreamReader(stream))
line = reader.readLine()
xmass=0
xcharge=0
while line is not None:
line = reader.readLine()
line=line.strip()
parts=re.findall(r'\S+', line)
if (len(parts)!=6): continue
# print parts[0]," ",parts[1]," ",parts[2]," ",parts[3]," ",parts[4]," ",parts[5]
b_pdg=ProMCHeaderFile.ProMCHeader.ParticleData.newBuilder()
b_pdg.setId(int(parts[0]))
b_pdg.setName(parts[1].strip())
b_pdg.setMass(float(parts[3]))
b_pdg.setWidth(float(parts[4]))
b_pdg.setLifetime(float(parts[5]))
charge=int(parts[2])
b_pdg.setCharge( charge )
pdg=b_pdg.build()
b_header.addParticleData(pdg) # add to the header file
if (xPID==int(parts[0])):
xmass=float(parts[3])
xcharge= charge
break
reader.close()
# build header now
header = b_header.build()
writeInfo("header",header.toByteArray())
desc = b_desc.build()
writeInfo("description",desc.toByteArray())
# make collision events:
oldPercentComplete = 0
for eventNo in range(Ntot):
percentComplete = (eventNo * 100.0 / Ntot)
if(percentComplete % 5 == 0 and percentComplete > oldPercentComplete):
print percentComplete,"% complete"
oldPercentComplete = percentComplete
b_event = ProMC.ProMCEvent.newBuilder()
event_builder=ProMC.ProMCEvent.Event.newBuilder()
b_particles = ProMC.ProMCEvent.Particles.newBuilder()
count=1
addParticle(b_particles,unit,lunit,Id=0,M=0,M1=0,M2=0,PdgId=90,px=0,py=0,pz=0,e=14000,\
status=11,weight=1,charge=0,barcode=0,x=0,y=0,z=0,t=0,D1=0,D2=0)
# proton ->
addParticle(b_particles,unit,lunit,Id=1,M=0.938272,M1=0,M2=0,PdgId=2212,px=0,py=0,pz=7000,e=7000,\
status=4,weight=1,charge=1,barcode=0,x=0,y=0,z=0,t=0,D1=0,D2=0)
# proton <-
addParticle(b_particles,unit,lunit,Id=2,M=0.938272,M1=0,M2=0,PdgId=2212,px=0,py=0,pz=-7000,e=7000,\
status=4,weight=1,charge=1,barcode=0,x=0,y=0,z=0,t=0,D1=0,D2=0)
# some gluon
addParticle(b_particles,unit,lunit,Id=3,M=0,M1=0,M2=0,PdgId=21,px=0,py=0,pz=0,e=1400,\
status=4,weight=1,charge=0,barcode=0,x=0,y=0,z=0,t=0,D1=0,D2=0)
# add single final-state particle with random Phi, Eta
G=LParticle()
phi = -Math.PI + 2*Math.PI*random.nextDouble()
eta = -4.5 + 9*random.nextDouble()
theta=2.0*Math.atan(Math.exp(-1*eta))
G.setMass(xmass)
G.setCharge(xcharge)
G.setThetaPhiP(theta,phi,momentum)
# G.setPtEtaPhiM(pt, eta, phi, xmass)
# Change origin too. mm in Z (-150 - 150 mm)
# assume a particle was produced uniformly a cylinder with R=4 mm
Dz = -150.0+300.0*random.nextDouble()
A = random.nextDouble()
B = random.nextDouble()
T1=A
T2=B
if T2