Squared matrix element of the Bhabha scaterring in QED
Code: "redberry1.groovy". Programming language: Groovy
DMelt Version 1.8. Last modified: 04/22/2014. License: Free
https://datamelt.org/code/cache/redberry1_4361.groovy
To run this script using the DMelt IDE,
copy the above URL link to the menu [File]→[Read script from URL] of the DMelt IDE.
import cc.redberry.groovy.Redberry
import static cc.redberry.core.indices.IndexType.*
import static cc.redberry.groovy.RedberryPhysics.*
import static cc.redberry.groovy.RedberryStatic.*
//******************************************//
//******** Bhabha scattering in QED *******//
//******************************************//
use(Redberry){
defineMatrices 'G_a', 'V_i', Matrix1.matrix,
'v[p_a]', 'u[p_a]', Matrix1.vector,
'cv[p_a]', 'cu[p_a]', Matrix1.covector
//photon propagator
def G = 'G_mn[k_a] = -I*g_mn/(k_a*k^a)'.t
//vertex
def V = 'V_i = -I*e*G_i'.t
//diagram a)
def Ma = 'cv[p2_a]*V_i*u[p1_a]*G^ij[p1_a + p2_a]*cu[k1_a]*V_j*v[k2_a]'.t
//diagram b)
def Mb = 'cu[k1_a]*V_i*u[p1_a]*G^ij[p1_a - k1_a]*cv[p2_a]*V_j*v[k2_a]'.t
//matrix element
def M = Ma - Mb
M = (V & G) >> M
def mandelstam = setMandelstam(
['p1_m': 'm', 'p2_m': 'm', 'k1_m': 'm', 'k2_m': 'm'])
M = (EliminateMetrics & ExpandDenominator & mandelstam) >> M
//complex conjugation
def MC = Conjugate >> M
MC = 'u[p1_a]*cv[p2_a] = v[p2_a]*cu[p1_a]'.t >> MC
MC = 'v[k2_a]*cu[k1_a] = u[k1_a]*cv[k2_a]'.t >> MC
MC = 'u[p1_a]*cu[k1_a] = u[k1_a]*cu[p1_a]'.t >> MC
MC = 'v[k2_a]*cv[p2_a] = v[p2_a]*cv[k2_a]'.t >> MC
def M2 = ExpandAll >> (M * MC / 4)
//electron polarizations
M2 = 'u[p1_a]*cu[p1_a] = m + p1_a*G^a'.t >> M2
M2 = 'u[k1_a]*cu[k1_a] = m + k1_a*G^a'.t >> M2
M2 = 'v[p2_a]*cv[p2_a] = -m + p2_a*G^a'.t >> M2
M2 = 'v[k2_a]*cv[k2_a] = -m + k2_a*G^a'.t >> M2
M2 = DiracTrace['G_a'] >> M2
M2 = (ExpandAndEliminate & mandelstam) >> M2
M2 = 'u = 4*m**2 - s - t'.t >> M2
M2 = Factor >> M2
println M2
}